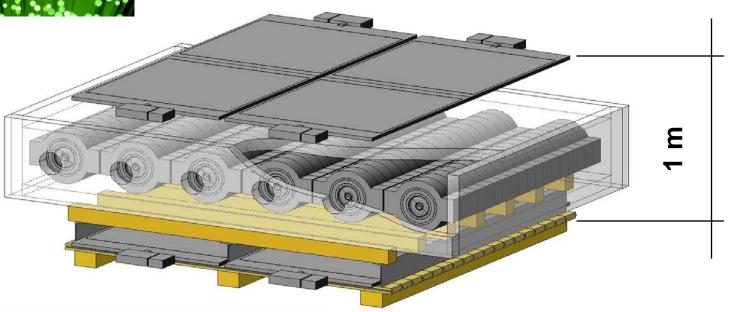
Москва. Мюонные телескопы. (ИЗМИРАН)

На станции космических лучей Москва в непрерывном режиме в настоящее время работают два телескопа. Сцинтилляционный телескоп с оптоволоконным сбором информации работает с 2016 года, счетчиковый телескоп лаборатории MCRL непрерывно работает с 2007 года,.

Здание и аппаратурный зал отдела космических лучей ИЗМИРАН. Крыша аппаратурного зала для уменьшения влияния снега выполнена в виде шатра. В зале расположены основные детекторы - нейтронный супермонитор 24nm64 и мюонный телескоп.

Контактная информация

Янке Виктор Гугович 8(495) 8510925, 8(926) 0347950, yanke@izmiran.ru


Москва. Основные направления научных исследований.

Основные направления научных исследований коллектива:

- исследование динамики векторной анизотропии космических лучей во время нестационарных явлений в солнечном ветре;
- изучение долговременной модуляции галактических космических лучей в гелиосфере;
- исследование энергетических характеристик и анизотропии потока солнечных частиц на основе специально разработанного варианта глобально спектрографического
- метода с учетом особенностей потока солнечных частиц;
- исследование поведения плотности и анизотропии космических лучей на различных стадиях развития Форбуш-эффектов;
- развитие глобально спектрографического метода (в том числе в реальном времени), разработка методики выделения предвестников прихода крупных межпланетных возмущений по данным сети нейтронных мониторов и мюонных телескопов;
- мониторинг окружающей среды по данным общеионизирующей компоненты, гамма излучения и эпитепловых нейтронов;
- совершенствовании и дальнейшее внедрение методики учета метеорологических и магнитосферных эффектов космических лучей;
- совершенствование и развитие ядерно-физического эксперимента;
- обеспечение непрерывных наблюдений нейтронной и мюонной компоненты вторичного космического излучения на станциях Москва и Мирный - Антарктида.

Мюонный кубический телескоп **OPTO**, комбинированный с нейтронным монитором.

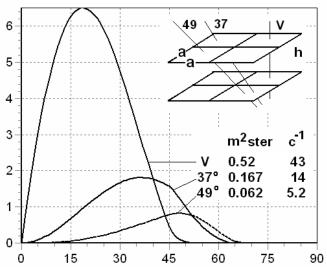
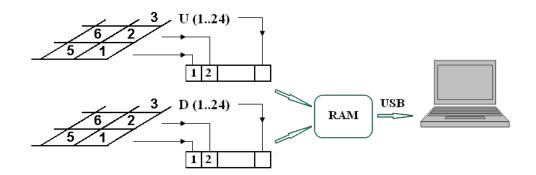
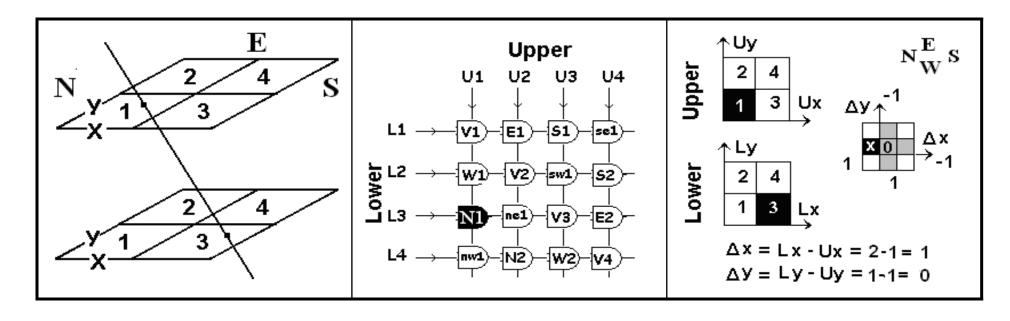


Диаграмма направленности телескопов. На вкладке приведена светосила SΩ и ожидаемая скорость счета.

Мюонный кубический телескоп ОРТО, комбинированный с нейтронным монитором.




Мюонный телескоп ОРТО площадью 4 м² создан на базе оптоволоконных сцинтилляционных детекторов, комбинированных с нейтронным монитором.

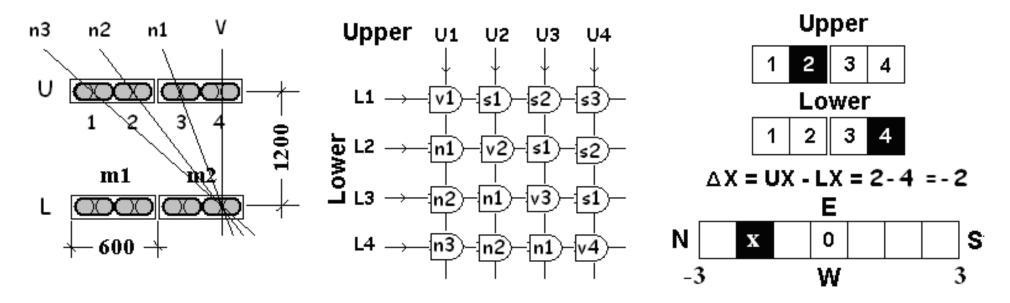
Для такой системы разработана система сбора информации MARS-10T2 на основе программированной логики, интегрированной с системой отбора данных двойных совпадений с максимальным числом каналов 24&24=596.

Геометрия телескопа (левый), матрица совпадений (средний) и выделение всех независимых направлений регистрации (правый).

Число совпадений $m=(kX\times kY)^2=16$. Полное число независимых направлений прихода частиц равно $n=(2\times kX-1)\times (2\times kY-1)=9$.

Счетчиковый мюонный телескоп CUBE в составе MCRL.

Телескоп CUBE приведен на рисунке ниже. Если рассматривать все счетчики, то для такого телескопа, состоящего из двух плоскостей детекторов (U и L) по k_X и k_Y детекторов по каждой координате, с помощью соответствующего числа совпадений можно организовать $m=(k_X\times k_Y)^2$ телескопов и выделить $n=(2k_X-1)\times(k_Y-1)$ независимых направлений. В нашем случае m=64, а n=15. При этом получаем наименьшее для данной системы число случайных двукратных совпадений $N_S=2\tau N^2=0.05s^{-1}$ при $\tau=10$ mks и N=60 s⁻¹. Это вариант счетчикового телескопа T1Cube.


Если же объединить счетчики парами, то для такого телескопа можно реализовать m=16 независимых совпадений и n=9 независимых направления прихода частиц.

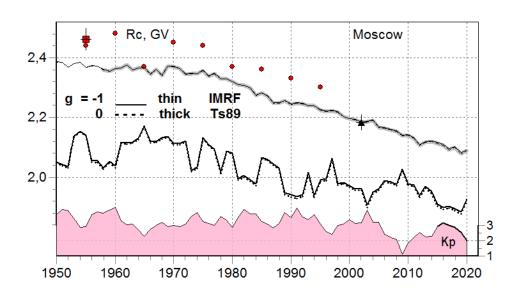
При этом число случайных двукратных совпадений N_s = $2\tau N^2$ = $0.02s^{-1}$ при τ =10 mks u N= 2×60 s^{-1} .

Это вариант счетчикового телескопа T2Cube.

Счетчиковый мюонный телескоп CUBE в составе MCRL.

Геометрия телескопа (левый), реализация всех совпадений (средний) и выделение всех независимых направлений регистрации (правый) для Это варианта счетчикового телескопа T1Cube.

Счетчиковый мюонный телескоп CUBE в составе MCRL.



Характеристики счетчикового телескопа T2Cube (**0 mwe+0 Pb**).

name	$\theta \times \phi$	N, Hz	S, m ²	$S\Omega$, $m^2 \times sr$	$C_0(\gamma \mathbf{b})$ (-1, 1)	R _c ,GV (2000)	R _m , GV	Viewing (Rm) Lat N° Lon E°	β, %/mb
-3	56×90	2.5			0.1620	2.49	85.1		
-2	45×90	10.2			0.2077	2.42	67.1		
-1	27×90	36.2			0.2647	2.34	52.9		
0	0×0	71.3			0.2984	2.21	47.0		
1	27×27 0	36.2			0.2647	2.11	52.9		
2	45×27 0	10.2			0.2077	2.14	67.1		
3	56×27 0	2.5			0.1620	2.04	85.1		
CUBE		170							
Upper	2π								
Lower	2π								

Moscow. Жесткость геомагнитного обрезания.

Изменение жесткости геомагнитного обрезания для станции Москва. Модель магнитосферы IGRF с учетом пенумбры в приближении плоского (γ=0) и степенного (γ=-1) спектра вариаций космических лучей. (детали)